Ed Berger, ANL HEP DOE Review, Sept 2009

Hadron Collider Phenomenology (Tevatron, LHC, RHIC) with emphasis on quantitative QCD predictions of signals and standard model backgrounds – Recent Examples:

- 1. Trileptons and the Search for Supersymmetry with Zack Sullivan, Phys Rev. D78:034030, 2008 and e-Print: arXiv:0909.2131
 - $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ ("Golden" SUSY channel) vs. leptons from SM Sources. Emphasis on the importance of isolated leptons from heavy flavor decays, $b \to lX$
- NLO Cross Sections for New Heavy Quark and Lepton Production at three LHC Energies with Qing-Hong Cao, ANL-HEP-PR-09-93, e-Print: arXiv:0909.3555
- 3. Longitudinal Parity-Violating Asymmetry in Hadronic Decays of W's in Polarized Proton Collisions at RHIC with Pavel Nadolsky, Phys.Rev. D78:114010, 2008

4. Phenomenology of Double Parton Scattering at LHC with Chris Jackson and Gabe Shaughnessy, draft in preparation

5. Model Independent Constraints Among the Wtb, $Zb\bar{b}$, and $Zt\bar{t}$ Couplings

with Qing-Hong Cao and Ian Low, e-Print: arXiv:0907.2191; Phys Rev D

Trileptons at LHC

 $\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \to l^+l^-l^{\pm}+E_T$ is a golden signature of supersymmetry.

CMS and ATLAS have analyses designed to observe this signal.

CMS TDR V.2&Note 2006/113; ATLAS CSC 7

$$P = \otimes \bigvee_{p} \bigvee_{p$$

WZ is thought to be the largest source of low- p_T trileptons at LHC.

 $W\gamma^*$ is not always included but should be.

Trileptons at LHC

 $\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \rightarrow l^+l^-l^{\pm}+E_T$ is a golden signature of supersymmetry.

CMS and ATLAS have analyses designed to observe this signal.

CMS TDR V.2&Note 2006/113; ATLAS CSC 7

$$P = \otimes \bigvee_{p \to \infty} Z/\gamma \underbrace{\langle e^{-}/\mu^{-} \rangle}_{e^{+}/\mu^{+}}$$

$$P = \otimes \bigvee_{p \to \infty} W \underbrace{\langle \mu/e \rangle}_{p}$$

WZ is thought to be the largest source of low- p_T trileptons at LHC.

 $W\gamma^*$ is not always included but should be.

Many processes with heavy flavors: bZ/γ , $b\bar{b}Z/\gamma$, cZ/γ , $c\bar{c}Z/\gamma$, $b\bar{b}W$, $c\bar{c}W$, $t\bar{t}$, tW, $t\bar{b}$

How important are leptons from heavy flavor (b, c) decays?

NOTE: All photons are virtual, and split to l^+l^-

Event simulations

We reproduced the analysis chains described in

- 1. CMS: CMS TDR V.2&Note 2006/113
- 2. ATLAS: ATLAS CSC 7

but we included, in addition, the contributions from processes with heavy flavors: bZ/γ , $b\bar{b}Z/\gamma$, $c\bar{c}Z/\gamma$, $c\bar{c}Z/\gamma$, $b\bar{b}W$, $c\bar{c}W$, $t\bar{t}$, tW, $t\bar{b}$

Simulation method

- Matrix elements computed in MadEvent (spin correlations included)
- MadEvent results fed through PYTHIA showering.

PYTHIA output is fed through a modified PGS detector simulation that reproduces CMS and ATLAS full detector results to 10%.

Important Analysis Cuts

- Require 3 isolated leptons
- Require no jets with $E_T > 30 \text{ GeV}$
- Require $M_{ll}^{
 m OSSF} < 75~{\rm GeV}$

Trileptons: SUSY & SM at CMS w/ 30 fb⁻¹ Analysis cuts:

-	$N^l=3,$	$M_{ll}^{ m OSSF}$
Channel	NoJets	$<75\mathrm{GeV}$
LM9	248	243
LM7	126	123
LM1	46	44
WZ/γ	1880	538
$t \overline{t}$	1540	814
tW	273	146
$t\overline{b}$	1.1	1.0
bZ/γ	14000	6870
cZ/γ	3450	1400
$b \overline{b} Z/\gamma$	8990	2220
$c \overline{c} Z/\gamma$	4680	1830
$b \overline{b} W$	9.1	7.6
$c\bar{c}W$	0.19	0.15

- 3 leptons
- No jets ($E_{Tj} > 30 \text{ GeV}$)
- Remove Z peak (demand $M_{ll}^{\rm OSSF}) < 75~{\rm GeV}$

Z+heavy flavor decays are $10 \times WZ/\gamma + t\bar{t}!$

We propose new cuts: $E_T > 30$ GeV; opening angles

NLO QQ, Single Q, and Exotic Lepton Cross Sections at LHC

- Heavy quarks and leptons expected in various models of New Physics
- NLO $Qar{Q}$ cross sections vs m_Q at 3 LHC energies plus full exploration of PDF uncertainties (shaded bands)

 NLO predictions also for production of a single heavy (T) quark, and for exotic heavy leptons

Other professional activities

- Current Principal Examples:

- 1. Collider Physics 2009: Joint ANL and IIT Theory Workshop
 May 18 22, 2009, with Zack Sullivan, Chris Jackson, Ian Low, Tim Tait, Carlos Wagner
 funds from IIT and ANL; see http://www.hep.anl.gov/jackson/CP09/Program.html
- 2. Organizer, CTEQ Summer School, 2009
- Lead organizer, Aspen Center for Physics Four-week Workshop, Summer 2010 "FOREFRONT QCD and LHC DISCOVERIES"

with Frank Petriello, Dave Soper, Bryan Webber, Giulia Zanderighi

4. Search Committee, Senior Computational Scientists, ANL Lab Wide

A dozen or more such positions to be filled, coupled with ANL Initiatives in Computer Science; new Theory and Computer Science Center

- 5. ANL Lab-Wide Postdoctoral Committee
 Recommendations to Lab Director of Named and Director's Postdoc Fellows
- 6. Moriond Scientific Program Committee,